新着記事

原子力の基礎に関すること

α付着率とミュオン触媒核融合反応

-α付着率とは-α付着率とは、核融合反応中に生成されたアルファ粒子(α粒子)が燃料である重水素や三重点に再度吸収される割合のことです。この吸収により、燃料が消費されず、エネルギーが放出されないため、核融合反応の効率に大きな影響を与えます。α粒子は核融合反応の産物であり、高い速度で移動しています。この速度が十分に高ければ、燃料に再吸収されずに逃げることになりますが、速度が低いと再吸収されやすくなります。α付着率は、α粒子の速度や燃料の密度の状態に依存します。高いα付着率は、核融合反応の効率を低下させます。そのため、高効率な核融合反応を実現するには、α付着率を低く抑える必要があります。
放射線防護に関すること

染色体異常の基礎知識

染色体異常の基礎を理解するために、まずは染色体異常の定義を明確にしておきましょう。染色体異常とは、染色体数の変化や構造の変化によって生じる遺伝子の異常の総称です。染色体数は通常、人間では 2n = 46 本ですが、異常によって 45 本以下または 47 本以上になることがあります。構造の変化としては、染色体の欠損、重複、転座などが挙げられます。これらの異常は、染色体自体または染色体上の遺伝子の働きに影響を与え、さまざまな疾患や障害を引き起こす可能性があります。
廃棄物に関すること

余裕深度処分とは?処分方法と対象廃棄物を解説

余裕深度処分とは、地下深くの安定した地層に廃棄物を埋め立てる処分方法です。これは、放射性廃棄物の処分方法として検討されている主要な選択肢の1つであり、地上処分よりも安全で長期的な解決策とされています。貯蔵施設は、地下数百メートルから数千メートルの深さに建設され、廃棄物は多重のバリアシステムで隔離されます。これらのバリアには、ガラス固化体、鋼鉄カント、粘土バリアなどが含まれ、廃棄物の動きや地下水への拡散を防ぎます。
廃棄物に関すること

原発用語:キャニスターとは?

キャニスターとは、使用済み核燃料を安全かつ安定的に貯蔵するために使用される容器です。厚い金属製の壁で構成されており、内部には使用済み燃料を包むための複数の隔離層を備えています。キャニスターは、使用済み燃料から放出される放射線を遮断し、周囲環境への影響を最小限に抑えるように設計されています。